43

Ene-type and hydride-shift reactions of thiocarbonyl compounds with (dimethylamino)bis(trifluoromethyl)borane, $(CF_3)_2BNMe_2^*$

H. Bürger, G. Pawelke and J. Rothe

Anorganische Chemie, Fachbereich 9, Universität-Gesamthochschule, 42097 Wuppertal (Germany) (Received September 23, 1993)

Abstract

(Dimethylamino)bis(trifluoromethyl)borane, $(CF_3)_2 BNMe_2$ (A), reacts with thiocarbonyl compounds of the general formula $R^2C(S)CH_2R^1$ to yield the triorganoboron adducts $(R^2C(S)CHR^1)(CF_3)_2B \cdot NHMe_2: R^2 = NMe_2; R^1 = H$ (I), Me (II); $R^2 = OEt$; $R^1 = H$ (III), Me (IV); $R^2 = SEt$; $R^1 = H$ (V). When $R^2 = SEt$ and $R^1 = Me$, the thioenol derivative (MeHC=C(SEt)S)(CF_3)_2B \cdot NHMe_2 (VI) is formed, while PhC(S)Me yields the analogous amine boranc $(H_2C=C(Ph)S)(CF_3)_2B \cdot NHMe_2$ (VII). Compound V adds a second molecule of A to form ((NHMe_2 · (CF_3)_2B)HC=C(SEt)S)(CF_3)_2B \cdot NHMe_2 (VII). Treatment of A with MeC(S)¹Bu at $-40^{\circ}C$ yields $(H_2C=C(^1Bu)S)(CF_3)_2B \cdot NHMe_2$ (IX) in an ene-type reaction. This rearranges at 20°C by a unimolecular process to the methyl-methyleneimine stabilized borane (Me($^1Bu)C(H)S)(CF_3)_2B \cdot N(CH_3)=CH_2$ (X). The identities of the novel compounds have been confirmed by multinuclear NMR IR and mass spectrometry.

Key words: Ene-type reactions; Hydride-shift reactions; Thiocarbonyl compounds; Boron; Perfluoralkyl; Amine-borane

1. Introduction

In an earlier paper [1] reporting on reactions of $(CF_3)_2BNMe_2$ (A), we showed that carbonyl compounds (and similarly nitriles) having CH bonds α to the C=O (or C=N) bond undergo an ene-type reaction leading to B-C bond formation (eqn. (1)).

Here the CH₂ group provides a proton for the conversion from **B** to **C**. In the absence of such a C-H bond (*e.g.* in the reaction of **A** with $(CF_3)_2CO$), a hydrogen atom of the N(CH₃)₂ group is instead transferred as a hydride to the carbenium centre in **B**, with the formation of a methyl-methyleneimine borane complex [2]. The surprising aspect of the process shown in eqn. (1) is the enol \rightarrow carbonyl rearrangement $C \rightarrow D$ in which a B-C bond replaces a B-O linkage. This rearrangement $C \rightarrow D$ is fast, and it seems to be inhibited only in the reaction of **A** with Et₂CO [1]. One reason for the readiness of **C** to rearrange is certainly the strength of the C=O and B-C bonds formed.

Correspondence to: Professor H. Bürger.

^{*} Dedicated to Professor O.J. Scherer on the occasion of his 60th birthday.

A somewhat related keto-enol equilibrium in boron chemistry has been previously observed. Whether $Me_2NB(R)OC(=CH_2)OMe$ or $Me_2NB(R)CH_2C(O)$ -OMe was initially formed depended on the nature of the substituent R (Me, ⁱPr, Ph) [3] (Scheme 1). However, in that case boron has a coordination number of three, and the rearrangement presumably involves a four-membered cyclic transition state. No reactions following the route shown in eqn. (1) have been observed for aminoboranes in which the boron bears alkyl groups [4].

In order to further elucidate the course of the reaction depicted in eqn. (1), we have studied the behaviour of the thiocarbonyl compounds $R^2C(S)$ -

 CH_2R^1 . These are expected to show a different reactivity towards A, the C=S bond being significantly weaker than the C=O bond. The results are described below.

2. Results

The reaction of A with a thiocarbonyl compound of the general formula $R^2C(S)CH_2R^1$, where $R^2 = NMe_2$ or OEt, and $R^1 = H$ or CH_3 , proceeded in the same way (eqn. (2)) as was observed for the corresponding C=O derivatives (eqn. (1)). While a reaction time of hours rather than seconds was required, yields were still quantitative. When R^2 was SEt and R^1 was a CH_3 group, the reaction stopped at the enethiol intermedi-

Scheme 1.

ate (VI), *i.e.* stage C in eqn. (1). $\mathbf{R}^{2}C(\mathbf{S})CH \mathbf{R}^{1} + \mathbf{A} \longrightarrow$

F ₃ C	$\begin{array}{c} R^2 \\ S \\ S \\ F_3 \\ C \end{array}$		$R^{1} \xrightarrow{R^{2}} S$ $F_{3}C \xrightarrow{B-N} F_{3}C$	(2)
(VI, VII)		(I-V)	
Compound	\mathbf{R}^1	R ²	Yield (%)	
Ī	Н	NMe ₂	95	
II	Me	NMe_2	93	
III	Н	OEt	93	
IV	Me	OEt	89	
V	H	SEt	96	
VI	Me	SEt	80	
VII	Н	Ph	71	

The compound PhC(S)Me reacted analogously and yielded VII. Dithioacetic acid ester was found to form a 1:2 adduct (VIII) with A (eqn. (3)). Compound VIII, which was also obtained by treatment of V with A, may be regarded as resulting from an ene-type reaction. No rearrangement of VIII with regeneration of the thiocarbonyl group was observed.

(VIII) 90%

However, t-butyl methyl thioketone reacts with A in a complicated fashion, as depicted in Scheme 2. Reaction at -40° C gave IX as crystals. When a solution of IX in CH₂Cl₂ was allowed to warm to ambient temperature, a rearrangement took place yielding X. This rearrangement was monitored by ¹H NMR spectroscopy by observing the disappearance of the C=CH₂ hydrogen atoms of IX and the growth of the N=CH₂ protons of X. Kinetic studies at 308, 313 and 318 K revealed that the rearrangement IX \rightarrow X is of first order, with an activation energy E_a of 112 ± 19 kJ mol⁻¹ K⁻¹.

3. Properties and spectra

The novel amine-boranes I-V are colourless solids; their melting points are reported in the Experimental section. They are stable to air and moisture and soluble in polar organic solvents. Species with a B-S bond (VI-X) are generally sensitive to hydrolysis and should be handled in a dry atmosphere.

The ¹H, ¹⁹F, ¹¹B and ¹³C NMR spectra of I–X were recorded. The chemical shifts, which are set out in Table 1, are consistent with the proposed structures, and only a few comments are necessary. The ¹³C resonances of the CF₃ groups were not detectable owing to quadrupole broadening. Compounds II and IV have an asymmetric carbon atom which should give rise to split NMR signals of both the N–*CH*₃ and B–*CF*₃ groups. However, only II showed this splitting in the ¹H, ¹⁹F and ¹³C spectra, while splitting only of two ¹³C NCH₃ resonances was observed for IV. Nevertheless, the presence of a chiral centre in IV is indicated by the appearance of an ABX₃ spin system for the OCH₂CH₃ protons.

The EI mass spectral data for I-IX are listed in Table 2. In contrast to the usual behaviour of CF_3 -B compounds, they give relatively intense signals for the molecular ions $[M]^+$. A characteristic fragment of all compounds is the ion at m/e 94, assigned to $[F_2BNH(CH_3)_2]^+$.

4. Discussion

The investigation has established that for thiocarbonyl derivatives (X = S) of the $(CF_3)_2BN$ moiety the C = D tautomeric equilibrium lies further towards D than is the case with the corresponding carbonyl derivatives (X = O).

On the other hand, the ene-type reactions observed with thioamides and thioesters, which are followed by a rearrangement, resemble those of the C=O derivatives to a surprising degree [1]. However, it should be noted that CH₃C(O)CF₃ and A also yield the stable enol derivative (H₂C=C(CF₃)O)(CF₃)₂B · NHMe₂ [¹H NMR δ : 4.9, 4.80 (CH₂); 4.32 (NH); 2.79 (NCH₃) ppm. ¹¹B NMR δ : -3.2 ppm. ¹³C NMR δ : 39.1 (NCH₃); 94.1 (C=CH₂); 145.6 (C=CH₂); 120.4 (CCF₃) ppm. ¹⁹F NMR δ : -74.0 (CCF₃); -65.0 (BCF₃) ppm]. This showed no tendency to rearrange to a C-alkylated product even on prolonged heating at 60°C.

The rearrangement of IX to X is unexpected. So far only carbonyl compounds such as $(CF_3)_2C=0$, carrying no α -C-H bonds [2], have been found to undergo hydride-shift reactions with **A**, while several terminal alkenes showed an ambivalent behaviour [5]. For example, H₂C=C('Bu)Me combined with **A** to give a 1:4 mixture of (H₂C=C('Bu)CH₂)(CF₃)₂B · NHMe₂ and (Me('Bu)HCCH₂)(CF₃)₂B · N(CH₃)=CH₂. In this case, steric crowding was assumed to account for the preference for the product formed by a hydride shift. In the case of MeC(S)^tBu, this explanation does not hold because MeC(O)^tBu reacts smoothly with A to give (^tBuC(O)CH₂)(CF₃)₂B · NHMe₂ [1]. Here the greater strength of the C=O than of the C=S bond means that

	I	II	III	IV	v	VI	VII	VIII	IX	X
	<u></u>									
$\delta(BCH_n)$	2.33	2.99	2.43	2.74	2.69			1.36		
$\delta(BN(CH_3)_n)$	2.78	2.68	2.85	2.71	2.83	2.89	2.68	2.70	2.94	3.79
		2.79						2.84		
$\delta(\text{CSN}(CH_3)_2)$	3.38	3.37								
	3.50	3.48								
$\delta(NH)$	8.51	9.17	6.54	6.79	6.88	6.88	3.60	5.87	4.9	
$\delta(CH-CH_3)$		1.41		1.27		1.85		0.09		1.18
$\delta(C(CH_3)_3)$									1.18	0.96
$\delta(=CH_n)$						6.56	5.71	6.34	5.09	7.91
							5.82		5.39	8.46
$\delta(CH_n-CH_3)$			4.52	4.53 4.57	3.21	2.85		3.03		2.72
$\delta(CH_{1}-CH_{1})$			1 40	1 41	1 32	1 21		1 30		
$\delta(C_6H_5)$			1.10	1.11	1.52	1.21	~ 7.5	1.50		
¹⁹ F										
$\delta(CF_3)$	-63.7	- 59.7 - 60.9	-63.0	-60.6	-62.5	-62.0	-61.9	- 56.6 - 57.4	-61.2	- 60.4 - 62.2
¹¹ B										
$\delta(B)$	-8.7	-8.6	- 8.5	- 7.8	- 8.2	- 3.4	- 4.0	- 4.2 - 9.5	- 3.0	-3.1
¹³ C										
δ(BCH_)	29.0	32.0	39.7	43.5	41.2					
$\delta(BN(CH_3)_n)$	39.2	40.5	39.8	39.5	39.7	39.3	40.1	40.5	40.4	48.4
		40.8		40.2				40.8		
$\delta(CSN(CH_3)_2)$	42.4	41.9								
	44.6	44.7								
$\delta(C(CH_3)_3)$									29.4	27.4
$\delta(C(CH_3)_3)$									39.6	35.5
$\delta(CH_n - CH_3)$			69.0	40.1	31.3	27.9		30.0		48.3
$\delta(CH_n - CH_3)$			13.3	13.1	11.7	14.4		14.6		20.3
S(C-CH)						23.0	174.9	149.0	1128	
$\delta(\mathbf{U}=\mathbf{C}\mathbf{H}_n)$						143.2	124.0	146.0	112.0	170.4
$\delta(\mathbf{N}=\mathbf{C}\mathbf{H}_2)$						123.3	143.3	134.8	153.5	170.4
$\delta(C, \mathbf{H}_{n})$						125.5	126.9	15 110	12010	
0(06115)							127.5			
							128.6			
							132.9			
$\delta(C=S)$	204.4	211.2	228.0	231.8	228.0					
$\delta(BCH-CH_3)$		19.3		12.3						

TABLE 1. NMR spectral data for compounds I-X (δ in ppm)^a

^a I-VII and IX-X in CDCl₃, VIII in CD₃CN. ¹H: 250.13 MHz, int. std. CHCl₃ = 7.27 ppm/CD₂HCN = 1.95 ppm. ¹³C: 62.9 MHz, int. std. CDCl₃ = 77.0 ppm/CD₃CN = 1.30 ppm. ¹⁹F: 84.67 MHz, int. std. CFCl₃. ¹¹B: 25.52 MHz. ext. std. BF₃ · OEt₂.

TABLE 2. EI mass spectral data in order of decreasing intensity (m/e (relative intensity (%)) [fragment] ⁺) for I-D
--

Ι	$\frac{103(100)[C_4H_9NS]^+; 296(49)[M]^+; 70(47)[C_4H_8N]^+; 94(19)[F_2BNH(CH_3)_2]^+;}{227(12)[M - CF_3]^+; 263(10)[M - SH]^+; 88(6)[(CH_3)_2NCS]^+; 277(3)[M - F]^+}$
II	$117(100)(C_5H_{11}NS]^+; 84(82)(C_5H_{10}N]^+; 310(66)[M]^+; 94(38)(F_2BNH(CH_3)_2]^+; 277(32)(M - SH]^+; 88(16)((CH_3)_2NCS]^+; 291(6)(M - F]^+; 241(5)(M - CF_3]^+$
III	94(100)[$F_2BNH(CH_3)_2$] ⁺ ; 236(64)[M - SC ₂ H ₅] ⁺ ; 297(61)[M] ⁺ ; 104(16)[C ₄ H ₈ SO] ⁺ ; 252(11)[M - OC ₂ H ₅] ⁺ ; 228(4)[M - CF ₃] ⁺ ; 278(3)[M - F] ⁺
IV	94(100)[$F_2BNH(CH_3)_2$] ⁺ ; 311(35)[M] ⁺ ; 118(31)[$C_5H_{10}SO$] ⁺ ; 250(8)[M - SC_2H_5] ⁺ ; 292(2)[M - F] ⁺ ; 266(1)[M - OC_2H_5] ⁺
v	94(100)[$F_2BNH(CH_3)_2$] ⁺ ; 252(75)[M - SC ₂ H ₅] ⁺ ; 313(60)[M] ⁺ ; 285(12)[M - C ₂ H ₄] ⁺ ; 59(10)[CH ₃ CS] ⁺ ; 294(3)[M - F] ⁺
VI	94(100)[$F_2BNH(CH_3)_2$] ⁺ ; 327(48)[M] ⁺ ; 72(33)[CH ₃ CHCS] ⁺ ; 101(30)[C_5H_9S] ⁺ ; 185(18)[$C_4H_{10}BF_2NS_2$] ⁺ ; 134(8)[$C_5H_{10}S_2$] ⁺ ; 308(2)[M – F] ⁺ ; 266(2)[M – SC ₂ H ₅] ⁺
VII	94(100)[F ₂ BNH(CH ₃) ₂] ⁺ ; 136(59)[C ₆ H ₅ CSCH ₃] ⁺ ; 329(48)[M] ⁺ ; 103(47)[C ₆ H ₅ CCH ₂] ⁺ ; 77(19)[C ₆ H ₅] ⁺ ; 121(18)[C ₆ H ₅ CS] ⁺ ; 91(12)[C ₇ H ₇] ⁺
VIII	94(100)[F_2 BNH(CH ₃) ₂] ⁺ ; 280(51)[M - S(CF ₃) ₂ BNH(CH ₃) ₂] ⁺ ; 506(30)[M] ⁺ ; 252(5)[M - S(CF ₃) ₂ BNH(CH ₃) ₂ - C ₂ H ₄] ⁺ ; 92(15)[F_2 BN=CH ₂ CH ₃] ⁺
IX	94(100)[F ₂ BNH(CH ₃) ₂] ⁺ ; 116(31){(CH ₃) ₃ CCSCH ₃] ⁺ ; 309(21)[M] ⁺ ; 92(12)[F ₂ BN=CH ₂ CH ₃] ⁺ ; 59(11)[CH ₃ CS] ⁺ ; 57(11){(CH ₃) ₃ C] ⁺

X, the thermodynamically more stable product, is formed rather than the hypothetical isomer (${}^{t}BuC(S)$ -CH₂)(CF₃)₂B · NHMe₂.

5. Experimental details

5.1. Dimethylamine-[(dimethylamino)thiocarbonylmethyl]bis(trifluoromethyl)borane (I), dimethylamine-[(1dimethylamino)thiocarbonylethyl]bis(trifluoromethyl)borane (II), dimethylamine(ethoxythiocarbonylmethyl)bis-(trifluoromethyl)borane (III), dimethylamine-(1-ethoxythiocarbonylethyl)bis(trifluoromethyl)borane (IV), dimethylamine-(ethylthio-thiocarbonylmethyl)bis(trifluoromethyl)borane (V), dimethylamine-(2-ethylthio-1thiabut-2-ene-1-yl)bis(trifluoromethyl)borane (VI)

The aminoborane (CF₃)₂BNMe₂ (2.10 g, 10.8 mmol) was added dropwise to a stirred solution consisting of 10.3 mmol of the thiocarbonyl component in 15 ml of dry CH₂Cl₂ at 4°C. The stirred mixture was allowed to warm to room temperature during 1 h (I, III, IV, V, VI) or 4 h (II). The solvent and other volatile by-products were removed in vacuo at ambient temperature, and the residue was purified by sublimation in vacuo at 10^{-1} mbar: I and II at 60°C; III, IV and V at 40°C. Compound VI was obtained as a thermally unstable, moisture-sensitive oil, which could not be further purified. I m.p. 99°C. IR (cm⁻¹): 1100 (vs); 1078 (vs); 1048 (s, CF₃). II m.p. 96°C. IR (cm⁻¹): 1089 (vs); 1063 (s); 1054 (s, CF₃). III m.p. 41°C. IR (cm⁻¹): 1093 (vs b, CF₃). IV m.p. 38°C. IR (cm⁻¹): 1090 (vs b, CF₃). V m.p. 57°C. IR (cm⁻¹): 1092 (vs); 1063 (s); 1042 (s, CF₃). VI IR (cm⁻¹): 1098 (vs); 1053 (s); 1041 (s, CF₃).

5.2. 2,8-Dimethyl-3,3,7,7-tetrakis(trifluoromethyl)-5-thioethyl-2,8-diazonia-3,7-diborata-6-thia-non-4-ene (VIII)

Compound VIII was obtained by a procedure similar to that used for V when 2 equiv. of A were used. The residue was filtered off and washed with dry CH_2Cl_2 . M.p. ~ 98°C (dec.). IR (cm⁻¹): 3135 (s, NH); 1560 (m, C=C); 1094 (vs); 1054 (vs); 1045 (s, CF₃).

5.3. Dimethylamine-(2-phenyl-1-thia-prop-2-ene-1-yl)bis-(trifluoromethyl)borane (VII), dimethylamine-(2-t-butyl-1-thia-prop-2-ene-1-yl)bis(trifluoromethyl)borane (IX)

A solution consisting of 7.3 mmol of the thioketone in 20 ml of dry CH_2Cl_2 was placed in an ampoule. The ampoule was connected to a vacuum line and cooled to liquid nitrogen temperature when 1.5 g (7.8 mmol) of $(CF_3)_2BNMe_2$ were condensed in. The ampoule was closed and the mixture stirred at $-40^{\circ}C$ until the colour of the thioketone had disappeared. All volatile

TABLE 3. Elemental analyses

Com- pound	Formula	Analyses (found/(calc.)%)				
		C	Н	N		
I	C ₈ H ₁₅ BF ₆ N ₂ S	32.39/(32.45)	5.06/(5.11)	9.42/(9.46)		
II	C ₉ H ₁₇ BF ₆ N ₇ S	34.71/(34.86)	5.56/(5.53)	8.88/(9.03)		
Ш	C ₈ H ₁₄ BF ₆ NOS	31.91/(32.35)	4.72/(4.75)	4.62/(4.72)		
IV	C ₀ H ₁₀ BF ₆ NOS	34.45/(34.75)	5.16/(5.18)	4.69/(4.50)		
v	C ₀ H ₁ BF ₆ NS ₇	30.51/(30.69)	4.50/(4.51)	4.38/(4.47)		
VII	C ₁₂ H ₁₄ BF ₆ NS	34.71/(43.79)	5.56/(4.29)	8.88/(4.26)		

products were removed *in vacuo* at 0°C and the residue recrystallized from dry $CH_2Cl_2/$ pentane at low temperature. Compounds **VII** and **IX** are sensitive to moisture and decomposed when sublimation was attempted. **VII**: m.p. ~ 50°C (dec.). IR (cm⁻¹): 1095 (vs); 1085 (vs); 1065 (s, CF₃). **IX**: m.p. ~ 53°C (dec.). IR (cm⁻¹): 1090 (vs); 1060 (s); 1035 (s, CF₃).

5.4. Methylmethyleneimine-(2-t-butyl-1-thia-prop-1-yl)bis(trifluoromethyl)borane (X)

Compound IX (1.0 g) was dissolved in carefully dried CH_2Cl_2 contained in a well dried flask and the solution kept at room temperature for 24 h. Removal of the solvent gave X, which according to its NMR spectrum was 90% pure. Attempts to purify X further by sublimation at 35°C and 10⁻¹ mbar pressure resulted in partial decomposition. For yields see text, and for elemental analyses see Table 3.

Acknowledgement

We thank Dr. D. Henneberg, Mülheim/Ruhr, for recording the mass spectra, and the Hoechst AG for a gift of CF_3Br . Financial support by the Fonds der Chemie and the Ministerium für Wissenschaft und Forschung NW is gratefully acknowledged.

References

- 1 A. Ansorge, D.J. Brauer, H. Bürger, T. Hagen and G. Pawelke, J. Organomet. Chem., 444 (1993) 5.
- 2 H. Bürger, T. Hagen and G. Pawelke, J. Fluorine Chem., 55 (1992) 323.
- 3 P. Paetzold and H.P. Biermann, Chem. Ber., 110 (1977) 3678.
- 4 Houben-Weyl, Methoden der Organischen Chemie: Organoborverbindungen, 133a/3b/3c, Georg Thieme, Stuttgart/New York, 1982, 1983 and 1984.
- 5 H. Bürger, T. Hagen and G. Pawelke, J. Organomet. Chem., 456 (1993) 19.